京东NLP实训营一期|完结无秘 【价值21800元】
15
tf-idf, Word2vec, FastText
TextCNN
XGBoost、LightGBM
文本特征工程
模型部署
Bag of Words模型
从tf-idf到Word2Vec
SkipGram与CBOW
Hierarhical Softmax与Negative Sampling
FastText
N-gram与平滑操作
文本特征工程
工具的使用:Gensim、Sklearn、jieba的使用
专题:如果阅读科研论文
项目:京东健康智能分诊项目讲解(1)
决策树
CART模型
Bagging & Boosting
随机森林和GBDT
XGBoost
精确率、召回率
F1,AUC
专题:如何处理样本不平衡问题
专题:京东Neufoundry平台的使用
项目:京东健康智能分诊项目讲解(2)
统计学习与深度学习的区别
深度学习与浅层学习
从逻辑回归到神经网络
深度学习的非线性性质
损失函数与优化器
神经网络的调参
CNN与TextCNN
实战:Pytorch的基础使用
实战:使用Pytorch实现神经网络和卷积神经网络
项目:京东健康智能分诊项目讲解(3)
Seq2Seq,Attention
Pointer-Generator Network
Beam Search的改造
RestNet,Faster RCNN
多模态数据的融合
BPTT与RNN中的梯度消失、爆炸
梯度爆炸的处理
LSTM与GRU
基于LSTM的文本分类
Bi-LSTM与Deep Bi-LSTM
RNN与LSTM的可视化
实战:基于LSTM的情感分类
专题:GPU技术详解
项目:京东智能营销文本生成项目讲解(1)
Encoder-Decoder模型以及各类应用场景
Seq2Seq模型与注意力机制
Greedy Decoding
Beam Search
基于Seq2Seq的文本生成
文本生成的评价指标
实战:基于Seq2Seq的机器翻译
项目:京东智能营销文本生成项目讲解(2)
抽取式文本摘要和生成式文本摘要
Pointer-Generator Network
Beam Search优化思路
Length Normalization
Coverage Normalization
End of Sentence Normalization
多模态识别技术: ResNet和Faster RCNN
实战:PGN+Seq2Seq解读
论文:京东论文解读
项目:京东智能营销文本生成项目讲解(3)
知识图谱的表示
GCN、GAT
Entity Linking
图神经网络的改造
什么是实体
Entity Linking问题解读
图的表示
图表示的应用场景
卷积神经网络回顾
在图中的卷积
图中的信息传递
图卷积神经网络(GCN)
论文:GCN论文解读和复现
项目:京东同类商品搜索项目讲解(1)
GraphSage详解
注意力机制讲解
注意力机制与图表示
GAT模型详解
GAT与知识图谱应用
对于Heterogenous数据处理
论文:GAT论文解读与复现
项目:京东同类商品搜索项目讲解(2)
Entity Linking前沿技术剖析
基于GNN的文本分类
基于GNN的实体识别
基于GNN的社交网络分析
基于GNN的链接预测
GNN的前沿主题
论文:图神经网络综述
项目:京东同类商品搜索项目讲解(3)
算法导师
产品经理
&
设计
前端工程师
后端工程师
实习生
实习生
实习生
组建团队
需求分析&产品设计
任务拆解
产品开发
颁发实习证明
项目答辩
部署&上线
产品开发
智能客服机器人已经成为了客服系统的重要组成部分,帮助人工客服提升工作效率,为企业降低人工成本。作为智能客服的行业先驱,京东多年来致力打造全链路的客服机器人,最大化提升商家的接待效率和用户体验。目前智能机器人的对话生成策略已经在“京小智”、“京东JIMI“等智能客服机器广泛应用,在用户购买商品的售前以及售后环节,为数千万用户以及数十万商家进行服务,为商家降本增效,为用户提升购物客服体验。
在这个项目中,学员有机会基于百万级的数据量来搭建一个智能客服系统,主要使用的框架为检索式对话系统和生成式对话系统。 在项目中,涉及到的技术包括倒排表、WAND、HNSW、L2R、BERT、Transformer等一系列技术。
收藏
收藏
收藏
收藏
收藏
收藏
收藏
收藏